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SUMMARY

A Holzer-Myklestad type of procedure, using a matrix formulation, is de-
veloped for the determination of the natural vibration characteristics of a
pretwisted rotating blade in coupled bending and torsion. The nonrotating
blade is considered as a special case. Results of a limited parametric study
are presented. It is found that in thé case of the rotating blade there can
be an appreciable effect of centrifugal forces in coupling the bending and
torsional vibrations.

In order to investigate the effects of Coriolis forces and the nonlinear
effects of large angular displacements, a study is made on the basis of a
simple model. Numerical results indicate that the Coriolis forces may intro-
duce substantial -phase differences between bending and torsional vibration.
Limited numerical results on the nonlinear effects indicate that these effects
decrease slightly the frequency of the characteristic motions as determined
from a linearized analysis and introduce some coupling between the character-
istic motions.
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1. INTRODUCTION

In a previous report1 the natural vibration characteristics of rotating
twisted blades were studied for the special case of coincident mass and elas-
tic axes. This eliminates coupling between bending and torsional vibration,
and the problem was studied as one in bending vibration only. Bending de-
formation about both principal axes of the cross section was considered.

The present work represents an extension of this previous work to the
case of noncoincident mass and elastic axes, that is, the case of coupled
bending and torsion. This case has already been treated analytically in
rather complete fashion in Ref. 2, the problem being formulated in terms of
governing differential equations and also in terms of energy principles. How-
ever, very few results are presented in that reference, and they are for a few
special cases of a rather restrictive nature.

In the present work a different analytical approach has been used. It
involves essentially an extension of the Holzer-Myklestad method for deter-
mining the bending vibrational characteristics of a beam to the case at hand.
The Holzer-Myklestad method had previously been extended by Targoff5 to the
case of bending of twisted rotating blades and applied in Ref. 1. It was
found to be particularly well-suited to automatic digital computation, and,
for that reason, has been extended in the present work to include torsion as
well, and has been applied in a limited parametric study.

An effect of centrifugal forces in coupling bending and torsional vibra-
tion, considered initially in Ref. 2, is taken into account in the present
work. 1t arises when the mass and elastic axes of the blade are not coinci-
dent.

It should be remarked that the inclusion of torsional deformation compli-
cates the effects of pretwist and rotation considerably. There may be a siz-
able steady-state or "pseudo static" torsional deformation of the rotating
blade in some cases. This is due to centrifugal twisting moment which, in the
case of negative pretwist and positive pitch, tends to twist the blade nega-
tively, and also to the twisting moment associated with tensile stress in the
longitudinal fibers, the so-called "centrifugel untwisting moment." These
two effects oppose each other in the normal case, and the extent to which one
or the other predominates depends primarily upon the amount of pretwist and
the pitch setting of the blade. An analysis of this deformation and presen-
tation of some results are given in Ref. L.

Additional effects relate to a departure of the torsional stiffness from
the value provided by Saint Venant theory. This departure is associated with




inclination of the longitudinal fibers of the blade with respect to the elas-
tic axis, due to both pretwist and torsional deformation. The normal stresses
in these fibers can be seen to have components in the plane of a cross section
and to exert a torsional moment about the elastic axis. They arise from two
sources. Firstly, there are normal stresses associated directly with torsional
deformation that are present even in a nonrotating blade. These stresses may
introduce a substantial nonlinearity into the torsional stiffness.’-D Secondly,
there are normal stresses associated with centrifugel forces, contributing to
the torsional stiffness in a manner which is essentially linear for practical
deformations; that is, there is & linear relationship between torque and elas-
tic twist.5’fL Some theoretical results for the case of torsional vibration,
with some or all of these effects included, are presented in Refs. 4 and 6.

Because of the possibility of substantial pseudo-static torsional deforma-
tion and nonlinearity in the torsional stiffness, an accurate determination of
the natural frequencies of vibration of a twisted blade should be based on
linearization with respect to the pseudo-static deformation. This has not been
done explicitly in generating the results presented in the present report. The
values of pretwist selected must be interpreted t¢ include pseudo-static de-
formation. This facilitates comparison with the results of Ref. 1, where
pseudo-static torsional deformation would have an influence on bending vibra-
tional characteristics, and where the values of pretwist must be similarly in-
terpreted to include such deformation.

Another interesting aspect of the rotating blade vibration problem is dis-
cussed in Ref. 7. It is shown that Coriolis forces, or so-called "secondary
inertia’ forces, associated with the combined vibrational and rotational mo-
tion introduce a phase difference between the bending and torsional vibration.
In order to investigate this effect more fully and to‘investigate the non-
linear effects of substantial angular displacements on the dynamic character-
istics of a rotating blade, an additional study, reported in Section 3, was
conducted on the basis of a simple model. The nonlinear effects considered
are those associated with inertia forces. Nonlinearity in the torsional
stiffness, as discussed above, and the effects of centrifugal tension on the
pseudo-static deformation and on torsional stiffness are not included, al-
though they could, in any extension of the present work, be included without
undue complication.




2. BLADE ANALYSIS

SYMBOLS

A = GJe + Tk2 + EBy(B')?

A

=1
f

A/EI;,

By, Bz section constants defined in Appendix A
C = EBoB'/A = c

E Young's modulus

ET,, EIz bending stiffness about major and minor principal centroidal axes,

respectively
EI, = EI,/EI.,, EIz = EIz/Ela
e distance between mass and elastic axis, positive when mass axis
lies ahead
e = e/R
e distance between area centroid of tensile member and elastic axis,
positive when centroid lies ahead
ey = e,/R
€ distance at root between elastic axis and axis about which blade is
rotating, positive when elastic axis lies ahead
;0 = eO/R
GJg effective torsional rigidity
GJe = GJo/EI,g
IC’ I mass moment of inertia of cross section about § and 1 axes, re-
spectively, defined so that corresponding moments for an element dx
are Igdx and I_dx
n
= ’ 2 - 2
Ig = Ip/o R I = In/poR
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polar radius of gyration of cross-sectional area effective in
carrying tensile stresses about elastic axis

mass radii of gyration about { and 7 axes, respectively
length of blade segment

1/R

bénding moment about major and minor principal axes of cross
section, respectively, when centrifugal tension is assumed to
act along undeformed position of elastic axis

mass of blade segment

resultant loadings per unit length in the x,{,n directions,
respectively

resultant torque about elastic axis at any cross section

resultant torsional loadings per unit length about the x,{,n
axes, respectively

blade radius

2
centrifugal temsion, ¥ T:

displacement in the x direction

shearing forces in the direction of the minor and major principal
axes of the cross section, respectively

coordinate system which rotates with blade (Fig. 2.2)

(EB2p' )" /EIo




=
"

Y/EI,,
B angle between major principal axis of cross section and plane of
rotation, either in the undeformed or pseudo-static state
B' = dp/dx
B' = B'R
AB increment in B between blade segments
7% = ELi,/Elz,
By’ BZ displacements of the elastic axis in the y and z directions,
respectively
51, 82 displacements of the elastic axis in the direction of the minor

and major principal axes of the cross section, respectively

£, 1 coordinates in direction of minor and major principal axes,
respectively
) total twist in blade between x = O and x = R, @ = -Rp'
A= meOR4/E110

a Vo Rt /EI,

T
o] mass per unit length of blade

o = o/og
¢ torsional displacement, positive when leading edge is up
W natural frequency of blade vibration
Q rotational velocity
[ ] rectangular matrix
{] column matrix

Other symbols are defined in the text.

Subscripts
n order of natural mode



0 value at x = 0O
T value at x = R
( )', ()" differentiation with respect to x, except in Appendix C.

BASIC MATRICES

The governing differential equations of motion for a rotating blade with
offset mass and elastic axes have been derived and are reported in Ref. 2.
These equations are repeated in Appendix A. In the present report these equa-
tions have been adapted to a matrix formulation which permits rapid numerical
analysis. This method is essentially an extension of the one presented in Ref.
1.

The coordinate axes of the blade are shown in Fig. 2.1. The cross section
coordinates and displacements are shown in Fig. 2.2. The blade is divided into
a number of spanwise segments, not necessarily equal in length. The mass of
each segment is assumed concentrated at its center, and the bending stiffnesses,
EI; and EIz, the torsicnal stiffness, GJ., and the angle of incidence, B, are
assumed constant between masses, appropriate average values being selected.

The built-in twist is accounted for by relative rotations of adjacent uniform
bays (between masses) about a spanwise axis, the change in angle AB being
equal to the total twist in a segment and occurring just outboard of the mass
(Fig. 2.3).

The quantities Vi, M1, 81, 81, Va, Mz, 82, 82, Q, and ¢ (Fig. 2.2), which
apply when the beam is at its maximum displacement in a free vibration, are
defined at stations along the beam and may be represented at any station in
the form of a column matrix:

{A) (2.1)

i
N
5

Q
¢

The elements of this matrix will vary along the beam in such a manner that
the variation can be considered to occur in a series of steps. Moving from the
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Fig. 2.2. Nomenclature and sign convention for cross-section coordinates,
displacements, bending moments, and shears.
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Fig. 2.%. Blade segment rotation.



tip toward the root of the beam, the change in {A] occurring from a station
immediately outboard of one mass to a station immediately outboard of the next
mass can be broken down into three steps, the first involving movement across
the mass, the second involving movement from one end to the other of a weight-
less uniform bay, and the third involving movement across the discontinuity in

B.
The relationship between the (4) matrices as they apply at the two ex-
tremes of this travel can be represented as follows:
[A}n-{»-l = [R][E][F][A}n (2-2)
where [F], [E], and [R] are rectangular matrices representing linear rela-
tionships corresponding to the three steps discussed previously.

The [F] matrix, relating the (4) matrices on either side of a concen-
trated mass, is written as follows:

1 o 0 Figy O O 0 Fig O Fiiol
0 1 Fogs Fou 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 Fsa 1 0 0 Fga 0 Fsi10
F = :
o 0 o0 O 0 1 Feyr Fsg O O (2.3)
0 0] 0 0] 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 © 0 Fega O O 0 Fsg 1 Feico
LO 0 0 0 0 0 0] 0 0 1 |
where
Fia = 2Lp(0®+0%sin®B)
2
Fig = - IpQl sin B cos B
Fi1n = [lpe{aP+02(sin®B-cos®B)) - fpeyNBcos B
2302
Fas = S5 + MI,(eR+R) (2.4)




Foqa = - pix®

Foi10 = -DleXﬂz

Fz4 = Fis

Fse = pl{ef+0Pcos2p)
Fsio = - 2plefPsin B cos B - plPe, sin B

Fer = %Z-“f+ 1T (P +0?)

Feg = Fou

Fos = ple(w +@sin B)

Fos = - plePsin B cos B

Foro = HIg+In)e? + (I,-I¢)(cos2B-sin®p)La”-tpee,0Pcos B (2.4)

The derivation of the elements of this matrix is given in detail in Ap-
pendix B, except for the contribution of centrifugal force coupling, which is
treated separately in Appendix D. It is seen that only the shear forces, bend-
ing moments, and torque are changed, since there are no discontinuities in
slope or displacement. The changes in shear force are due partly to the in-
ertia force associated with the vibrational motion of the mass and partly to
the component of centrifugal force normal to the undeformed position of the
elastic axis. Part of the change in torque is related to the change in shear,
since the mass and elastic axes do not coincide, and part is due to the inertia
force associated with the torsional vibrational motion. The change in bending
moment, except that associated with centrifugal force coupling, is fictitious
and arises from a special feature of the analysis. This feature involves the
replacement of the component of the centrifugal force parallel to the unde-
formed position of the elastic axis by an equal force along the line of the
undeformed axis and an appropriate couple to provide static eguivalence. The
changes in bending moment indicated in the [F] matrix are then due only to the
applied couple, the moment due to the force applied along the undeformed axis
being accounted for in the [E] matrix. When moments due to both sources are
considered, the discontinuity in bending moment disappears. Note that, on
the basis of this procedure, the bending moment at any station is not M, but
rather M plus the moment of the tensile force T acting along the undeformed
elastic axis.

The elements in the [E)] matrix are found by the solution of the differ-
ential equations of combined bending and torsion of the weightless uniform
bay between masses. These equations and their solutions are given in Appen-



dix C. The resulting [E] matrix is:

1 0
Ea3 1
Ezx Eaz
Es1  Es2

0 0

E =

0 0
E7:  E72
Es1 Eaz

0 0
| 101 Eio2

where, if we define

the components of E are given below.

fined in Appendix C.

Py

P2

Py

0 0
0 0
Eas Ese
E4s  Eae
1 0]
Ees 1
E7s  E7e
Egs Ess
0 0

(p5-81)(pa-21)

(al-as)(Pﬁ-Pg)
(p2-81)(po-82)
(al-as)(Pl-Pz)

2 2

(pi-83)(p2-83)

(
(a1-23)(p3-p8)

(pi-as)(pe-ay)

(a1-a3)(pE-p8)

oy = 4
E ==
3t £2EI,
_ P . P2 s
Eaz = + —32_ sinh pyf + sinh pot
EIlipy EIl:p2
Ess = - Ps cosh pyf + P> cosh pot

10

Eas  Eaio

Bss  Earo
0 0
0 0

Ezg O

Egs O
1 0

Ei08 Eio010

(2.5)

(2.6)

The quantities pj, aj, and f{ are de-

-ﬁfa2a6P4-aaa5P3)cosh pil + [-azagPsitazag(Ps+l) Jcosh pgl-aaa%y

(2.7)




Eag

Ea7

Eag

Eag

Eaxo0

Eqa

Eq2

" Es4a

Eqq

Eys

Esn

Ese

+

—alEIlEag

2Py (1
asasEl2 \p1

- 32P4
anslg Elz

aaEIgEas

-azEIzEag

___ B2
f2(pi-r8

2
) [}(pl—aa)pg cosh p;2+(ps-as)ps cosh pg[] + 8283

sinh pyf - == sinmh p2€>
b2

(zosh pi1l-cosh pz!)

fo

-apEl1Egp + Eaew(N)

1
foEI,

{}-3388P3+3286P4) L sinh pi2

P1

’ 1 i
[azas(Pa+l)-azasPys ] oo sinh pgl-asasé}~

EI,

- EIlESZ

(a1-a3)pipz Pi

2, 2 2
1 [' 1(ps-a3)taz(pz-a1) _ Ps osh put + E%-cosh pg!]
1 Pz

2 2
_ aa(py-p2)Py _ 8123 cosh pyt + B2 cosh pat

piré

agPﬂ
a384DP3PSEI>

Eas

-agklzBys

Ea7

Pi Pz

2 2 2
[}Pl‘PZ) + pacosh py! - picosh P2{]

11

(2.7)



az 2 2
. 2 .
Eqo = ;—(—2—_—2)— [-(p%-as) P2 sinh p1i+(pa-as) Bl sinh pgl] + @%ﬁ&i
2\P1-Pz2 P %=1 2

B0 = 82EI1Ean + EyeWM)

Bes = £
e Ba - : + (- .
Ena aafoElL [(azang a32gP1)p1 sinh p1f + (-azagPztazagPy)pz sinh sz]
a4Pl
E7z = 241 (cosh pif-cosh ppl)
agEIl
E7s = i‘;ﬂ (-p1 sinh pif+ps sinh pof)
2
E74 =-21EI1E7>
E =- BEr7-1
75 ToE (E77-1)
1 (2.7)
E7e == TS (P2py sinh pif-Pspe sinh pal)
aghbla
E77 = Pz cosh pil - Pz cosh pal
E7e =-agElzE7s
Bre =~ B8RP [_(;2-a1) sinh put + (pB-ay) sinh pot]
f2(pi-p2) P2 D1
- (N)
E7io = ~a82EIl 1 E72 + E7eW
Egy = —o4 [(agang-agagPl)cosh p1l + (-apagPs+azagP;)cosh pgl—agaG]
agngIl
Baw - -2aPi (L JL g
82 anElL Ql sinh pi! T2 sinh pol
Egaz = —EI1E72

12




Ega = =21El;Ege
1
E = Eg7-1
85 ToEL (Eg7-1)
e L 1
86 = agElz (Egg-1)
. Ps . I
Eg7z =-—-2 sinh pal 4 sinh pz4
Pi o=
Egg = P2 cosh p1f - Ps cosh p=!
a
Egg = —2—35= [—(p‘f-al)pg cosh pyf+(ps-a1)pi cosh le] + 2184
- f2(p1-p2) fz
Egio = agEl Fg2 + EasW(N)
E = 1 (pﬁ-as) (apagPo-azagPy) sinh pal
101 a2f2EIl. 1 zagl2 3egly 1
(p2-83)
- AP2-83) (asagPa-agagPi) sinh pgl+aga3asl]
j =
Py [. 2 2 2 2 2 2 ]
Eiop = —is— -p2)-(p5- h pyi+(pa- h pal
102 agpipiEll as(p1-r2) (pi-aa)pacosh p1 (p3-az)picosh pz

P (pa-as) (pa-as)
Eion =-EL [ (»1-83) gy pig + 283) o pzl]
agz Pa P2

ElO4 = alEIlElog
P, [ 2 2 2 2 2 2
Eios = ——2—5— |-a1(p1-p2)*+(p1-81)p2 cosh pif-(pz-a1)p1 cosh Pal:\
0% a38.4D3ipaElz R
Eios = —2 (pi-81) sinh pif - (p2-21) sipn pgl]
azaqsElp Pa D2
Ei07 = —a3BlzEi05
Eioe = agBEIzEics

13




2

1 Qpl-al)(Pi’a3>P2 : (P;‘al)(pg'a )p2 ;
Eios = T3 -ajagd - S5 << sinh pyf + 25 3821 sinh npl
- (p1-P2)P2 (p1-p2)p2 -
1 I (2.7
Eio10 = -z —2b {p?(p%-aa)—aa(pg-al)‘l + Py | -(pf-as)pd cosh pif
P1Pz (al-aa) R J L

2 2 (N)
+ (pz-as)p1 cosh p21!| f+ E10eW

1 t
Note that ®; and B2 are positive for increasing deflection in the positive x
direction.

The [R] matrix serves to rotate the coordinate axes through the angle AB
and is written as follows:

[cos 48 0 0 0 -sin AB 0 0 0 o ol
0 cos AB 0 0 0 -sin AR 0 0 0 0
0 0 cos AB 0 0 0 -sin AB 0 0 0
0 0 0 cos AB 0 0 0 -sin AB 0 0
sin AB 0 0 : 0 cos AB 0 o] o] o] o]
R]) = 0 sin A8 0 ol cos AB 0 0 0 0
0 0] sin AB 0 0 0 cos AB 6] 6] 0
0 0 0 sin AB 0 0 0 cos AB O 0
0 0 o] 0 0 1 ©
L 0 0] 0 o] o] o] 0 0 _i_
(2.8)

METHOD OF SOLUTION

By a successive multiplication of the appropriate matrices, a linear re-
lationship can be established between the [A} matrices at the root and tip of
the beam

{A}root = [C](A]tip . (2.9)

Recognizing that the shears, bending moments, and torgue are zero at the
tip of the beam, the [A]tip matrix can be reduced to a five-element matrix,
and the corresponding five columns can be eliminated from the first [F] matrix
at the tip of the beam; successive multiplications will then yield a 10 x 5
matrix product.

In order to satisfy the boundary conditions at the root of the beam, the

determinant of a 5 x 5 matrix formed from appropriate elements of the [C]
matrix must equal zero. For example, for a cantilever blade the third, fourth,

14




seventh, eighth, and tenth rows form the 5 x 5 determinant, and for a fully
articulated blade with torsional restraint the second, fourth, sixth, eighth,
and tenth rows form the determinant. Other boundary conditions, such as
elastic restraint at the root, can be handled easily.

The elements of this determinant will be polynomials in w2, and upon
expansion a polynomial equation in o2 will be obtained. In principle, the
natural frequencies of the blade could be determined by solving for the roots
of this equation; however, such a procedure is far too cumbersome to be feas-
ible.

A more practical procedure involves the introduction of trial values of
into the various (F] matrices and evaluating the elements of all matrices
numerically. The matrix multiplications can then be carried out numerically,
and the appropriate determinant evaluated. The value of this determinant,
which may be termed the "residual,” may then be plotted versus w or «? and
the location of the zeros of the residual will determine the natural fre-
gquencies of the blade.

STEADY-STATE DEFORMATION

As pointed out in the introduction, there may be a sizable steady-state
or "pseudo-static" torsional deformation of the rotating blade in some cases.
The loadings which produce this deformation are given in Appendix B along
with those induced by the lateral and torsional vibratory motion. It is
possible to determine this pseudo-static deformation and to then find the
natural frequencies based on linearization with respect to the pseudo-static
deformation. In the numerical results which follow this has not been done
explicitly. The valuesof pretwist selected should be interpreted to include
the pseudo-static deformation.

In order to determine the pseudo-static deformation let us define the
following matrices:

(a}5 column matrix of blade variables just outboard of mass i

A

{A)}; = column matrix of blade variables just inboard of mass i
[Fo]. = matrix [F] with ® = O, across mass i

04

{d}. = column matrix of steady state quantities across mass 1

i
[g]i = column matrix of steady state quantities across bay between
masses i1 and i+l
[D]; = [RI]{[E]ly across bay between masses i and i+l.

15




Then it follows that

(A) L)o@

------ "Lb]’ Ikt B R (2.10)
A

(8)141] [[D]i | {gﬂ (a);

‘Lj = foy™ T (2.11)

and

we have

(2) m)E )] ja]
{__i_r_qq*g} = ['Lb] : "iJ JL-IL , (2.12)

where

) ! (0] D | (el] [ Fol, | (a);

and in which 1 decreases as one proceeds from left to right.
Equation (2.12) may be written

(A]root = [H][A}l + [h] . (2-12&)

Satisfying the boundary conditions at the root and the tip of the blade, Eq.
(2.12) may be reduced to

(k)] [A“hl - - Ky, (2.13)

16




where

(a(1)y =<Ls3 (2.14)

and where K = 1 corresponds to a fixed root, and K = 2 corresponds to a fully
articulated root (M;y =Mz = 0). [H K)] is a square matrix of order 5, and
[h(K)} is a five element column matrix.

In the case of a fixed root, [H(l)] is obtained by deleting rows 1, 2, 5,
6, and 9 and columns 1, 2, 5, 6, and 9 from [H], and (h{1)} is obtained by
deleting rows 1, 2, 5, 6, and 9 from {(h}. Similarly, in the case of a fully
articulated blade, [H(E)] is obtained by deleting rows 1, 3, 5, 7, 9 and
columns 1, 2, 5, 6, and 9 from [H], and {h(2)}is obtained by deleting rows 1,
3.5, 7T, and 9 from {h}.

Equation (2.13) may be solved for {A(l)], and (A} then determined for all
stations by applying Eqs.(2.10) and (2.11), starting at the tip and progress-

ing toward the root.

The matrices [d)} and {g} are each ten-element column matrices which are
obtained from the steady state terms in Appendices B and C. From Appendix B,

di = - pIf® sin Bley+e cos B)

d2=d3=d4=d7=d8=d10=0

ds = pl0? cos B(ey+e cos B) (2.15)
dg = -pl x e92
de = (In-Ig)lQ2 sin B cos B - plee @ sin B

Appendix C shows that the {g} matrix can be derived from the [E] matrix if
the terms involving Mz and Q are extracted and Mz and Q are replaced by Tep
ani Tk;B', respectively. Thus,

gy = Ei2'I‘eA+EingiB' . (2.16)
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NONDIMENSIONAL FORM

It is convenient and desirable to treat the problem in nondimensional
form. The [A) matrix can be redefined in terms of nondimensional forces,

moments, and deformations as follows:

The corresponding nondimensional

0 El4
Fos Foq
1 0
0

Fgq
0
0]

0

Foq
0

O O o O O o o O r o

o O o O O o ¥

[ c o o 0 © © o o o+ |

where

81
51/3

t
o2
82/R
QR/EI].O

| ¢

form for the [F] matrix follows:

o O O O O ¢+ O O O O
O O o O O O O O O
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<'M2R /EI1g ?

(v.R2 /ET {J
MiR/EI;

J

Fis

O O O O o O O O o

Fii1o0

(2.17)
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Fiag

Fis

Fii0

Faa

Fou

Fzi0

Fga

Fsa

Fsi0

Fg7

Fes

Foq

Fgg

Foi0

"

- &2

Io (N +° sin® B)
--2 .

- Ipg sin B cos B

-2 2 2 2 - =2
ple(N +u (sin B-cos B)} - plégu cos B

BLX 4 35, (%)

BL(\+1Pc0s%B)

- p2%sin B(2F cos B+eg)

IS
12

-—— 2 2
+ lIC(?\ )
Faq

_=-, 2 2 =2
cle(N +u sin B)

- T26u3sin B cos B

(E +I YINZ + pzj-cos EB(E -I¢) - pee Tucos B
£ 4n n~+¢ o
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And the corresponding [E] matrix

where

Ezy

Esx

Eaz

Eaa

x|

34

BEas

Eas

[ 1 0
Eoy 1
E:31 ESZ
-E‘4 1 .E42

0 0
0 0
B71  Ere
Eal E—82
0 0
ElOl Eio02
T
1
ToEI,

{(5236'154 -B48gP3)cosh P

Eios Eios Eios Eice Ei07 Eios Eice

I+ [-828gP4+848(Pa+l) Jcosh Pa T:asae}

=3 gipn Tl - L2 gimn T2l

EI, 7

EI D2

- P cosh P11 + P cosh P2l

T E1 g

Z 32P4
8.3§4ET[2

5354 2

ap

T2(p2

-P8

) [(ﬁ-éa)pe cosh P11-(T2-83)p% cosh le] =

(2.21)
. - T 1 . —_ 7
inh I - =— nh !
S b1 5o s1 P2>

ml
+_bLt
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Bajp =

4o

Ese

Baq

B4

Eso

Eg30 =

E71

B2

E7a

E74

Bl Eae + 1M EL,

{( EsAgPa+asEsP,) 2 = sinh Tal
ngIl

b1
1 - _
[ Gaa5 (Patl) -a2a6P4]§—2$ inh Pol-Baagl }

1 [ T (Pa-8s)+8a(Pa-81) Ps - _
5 — = =2-2 - == cosh D1l + — cosh p2!
EI, (81-83)DI05 P1 P2
EI Eao

a—ng cosh D2l

2 _2.= =
as(P1-P2)P1 _ EiP3 . =7
- s - —=z= cosh pi!l +

PiP2 %1 %

a ? 2 - -2 - _2 .
=k VAR [(ﬁ-pz)ﬂaz cosh P1.-P1 cosh pzl:l

B4 DIDSELs
- Eas

EEE—:I -
2 2 E4s

Ez7

-2 =2 P
_—2—2_ [(ﬁz"as .P.; sinh P, T+(Pa-8a) & sinh 527] + 2283°

'3
B

T2(P1-D2)

2 _(N)_
2B Eyp + H W E4e

)

a4
BoToEI,

F'—_:*—I:Tl— (cosh pyl-cosh P=1)
EXINEY

E_;_Pl (-1 sinh P1T+P2 sinh Dol )
2

3,EI,E72

21

[( -8286Po+838P, )Py sinh P1l+(Go8ePa-8s8gP1 )Pz sinh To l:_\




E710

Eg1

Eaz

Ega

Egq

Egs

Egs

Eg7

Egg

Egg

Eg10

2 = J— —
2 (-P2P1 sinh Py l+P3P2 sinh Dal)
EXYE

P> cosh P1l - Pz cosh P2l

53212 -E-76

84P1D 2 _ D2 - - ,. _ D -
%_ [(pl-al) sinh pll-(pg-al)‘plv'sinh pgl]
f2(P1-D2)

— = _(N)_
BBl By + WEW )E'rs

——aﬁ— [(Eg_a-epg'é:gas?l )COSh 51 T‘*‘( '5'25'6?3*:8.'358?1 )COSh -52 T-Egas]

-5-2 fgﬁ 1

5. ?1 l Si - 7 l . _—
- =41 (= sinh D1l + = sinh Dol
asEl, <;l Pz

EI,E72

aaE 2
2

L—— (Egg-1)

=RV HI)

- f_z sinh f)ll_ + gﬁ sinh Pal
ba P2

P> cosh T1Z - Ps cosh Dol

—2s - [—(ﬁ-al)ié cosh P12+(P5-81)P3 cosh f»ai] + 2184
f2(P1-P2) f2

- = = =(N)
agEIlEeg + }J.ZW E86
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_ 2 _ _ _
Eior = = L [(p&-ag) (2285P2-838gP; )sinh D1l
a2f2EI; D1

2 _ _ _ 7
. (P2-8a) (apagP,-EsaeP,)sinh @zt]

=2

Eioz = —=s—5=— [ég(i,%_-ﬁ%)-(iﬁ-aé )F8 cosh Py I+(P5-83)P2 cosh P2l +§2'53§6[]

- = (=2 - _ eE =
Fros = Ex [i_r%_aﬁ sinn .7 - m;;al simh -ﬁlf]
1 2

Eios = 81ELiEige
— 72§4 _ .2 2, .2 2 -, 2 _ .2 _
Eios = ———S5— [—alf\pl-pz)+(p1-a1)§2 cosh P1l-{Pz-81)P1 cosh D=l
a32,P1P2EI2
- 25, (Pa-a1) — a8 -
Eice = —7— = [pﬁ i/ sinh Dal - P2781 ginp ﬁal]
8q24EI P1 jor-]
= a ﬁ E 5
Eip7 = - —25205
7
= B.EIE
Eios = as ; 106
-I/
.2
Eros = = ! 81857 - —prm l:(f)i 1) (Pa-83) 22 sinh Pyl
¢ = T |7 T =2 = 1 - D
e = £ (5-32) B
2 2 Th
+ (Po-81)(Pa-3s) B sim flaa
Dz
= 1 z 2,2 _ — (=2 = = == -2 - 7
Eioio0= _;_2{ — [Pl(PE:‘as)‘aS(PZ'al)_J +Py ['(Pi"aa)Pe cosh Py’
P1bz L(31-33)

+

-2 — =2 - = ==(N)=
(P=-23)P1 cosh Pz%]}‘+ W w )Eloe

The nondimension quantities used above are defined as follows:
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N
=
H||HI
=

ol
o
1]
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-
H“Cl
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as = W77
Elo
54 = = 7'J?“41/E12
(N
as = H2ﬁ )

ol
~
[}
]
R+
o
%
—
n

Eé = K(N)
F, = K -7 - 8e - 5y
ry 2 uzﬁz e 1 zz Y - = o (e e N i= o
f1 = W |=—-AT [=/ + = + =—| = 828g-ag(B@1+83)+818487
EIl Il EIg EIl
To = w2 L (TR-%0%) = 83(3188-3286) (2.22)
1,F1,
2 7 [F N2 7.
Pr = - =+ + ié— -2
2fo \ f fb
=2 T )2 _ T
= e =1 - A - 12
b2 2t ‘\Qo) o
-2 - (/=2 _
51 - (El-a;)(22-al)
(81-8a) (B1-38)
-2 — -2 _
Fé _ §2;-a12(22-332
= T -2 .2
(a1-83)(P1-D=)
- = =2 =
133 - (El‘aa) 22'3-;)
— = \m2 =2
(al-as)(Pl-Pz)
2 _ .,.2
B, = (P1-83)(P2-83)
— — -2 _2
(81~ 3)(P:£-P2)
(x) N S
= sin By lipjeixsin By + cos By lipieixy cos By
i= i=1
N N
W(N) = = cos BN z _l—igigi)_(i sin B4 + sin BN Z ZiBiEiii cos By -
i=1 i=1

where N denotes the number of masses outboard of the bay under consideration.
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The {Ej matrix has the components

dy; = - Ipp® sin B(Eg+E cos B)
dp = dz=dy =d7 =dg=4d1o = O (2.23)
ds = Ipu® cos B(Ey+E cos B)
dg = - Ipxeu2
dg = (TﬁJfg)fua sin B cos B - Ipesgr® sin B,
and the components of (g} are
gy = K2(E1oTe,+EidTi,B ) (2.24)

For the case of zero rotational velocity, the ff] matrix is obtained
directly by substitution of p = 0. When this substitution is made in the [f]
matrix, some of the elements are found to be of indeterminate form and a
limiting process must be applied. This results in:

Egl = Z
-2

= I
E 1 = - —
2 oET,
= T
E = - =

a2 T,
_ (2.25)
Eag = 1

554 = 0

R = L

4 1 6:E—Il
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Eio7 = 0

Eios = O (2.25)

[~

Biog = -

>l
<

NUMERICAL RESULTS

A program of computations was performed for two representative cantilever
blades. The properties of these blades are given in Table 1. They
were chosen to have the same bending properties as blades for which numerical
results are reported in Ref. 1. For these two, the section constants I3, 1o,
By, Bz, GJe, ky correspond to those for a thin-walled rectangular section, and
it was assumed that some nonstructural mass was distributed in such a way as
to provide an offset between the mass and elastic axes, and to provide suffi-
cient mass moment of inertia to make the uncoupled first torsional freguency
and the second uncoupled flapwise frequency coincide. The result in both cases
is a lightly coupled system as far as flapwise bending-torsion is concerned.

In both cases the blades were divided into ten segments, the cantilever
root condition was applied, and the four lowest frequencies were determined.
A range of wvalues of pretwist and rotational velocity was chosen, and the re-
sults are presented in Figs. 2.4-2.6. In addition, results for beam No. 2
with rotary inertia neglected are presented in Fig. 2.6, and with centrifugal
force coupling neglected in Fig. 2.7.

DISCUSSION OF RESULTS

The influence of twist on the natural frequencies of nonrotating blades
is shown in Fig. 2.4. The fundamental frequency in each case is almost com-
pletely unaffected. The higher frequencies are affected by the coupling be-
tween flapwise bending and torsion, and between all three types of deformation
when twist is introduced.

The combined effects of rotation and twist on blade No. 1 are illustrated
in Fig. 2.5. In the untwisted, nonrotating case the fundamental mode is iden-
tified as predominantly flapwise bending; the second mode is uncoupled chord-
wise bending; and the third and fourth modes are coupled flapwise bending and
torsion. The effect of rotation and twist is to couple the first two modes.

A comparison of the results in Fig. 2.5 with results in Ref. 1 for a beam with
the same bending properties but with torsion neglected shows that essentially
no change has been introduced by the presence of torsion. The fourth frequency
in Fig. 2.5 differs slightly from the third frequency for the beam in Ref. 1,

no
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TABLE I

BEAM PROPERTIES

Beam No. 1 2
i
h e a
]
1 —
h/L 2.285.10°1 6.225-10°%
n/R 1.000-1072 1.000-1072
e 0.25 L 0.15 L
s, 0 0
Ky 0.015522 0.04926
By 0 0
72 1.000.10-1 1.000.10°2
I,[in.4) 2.355 13t 8.1987 h%
Io[in.%) (2.355.10)h3t (8.1987-10%)n%¢
B;[in.%] 32.692 h5t 15.345 h5t
Bo[in.®] 0 0
GIx 1.153 1.k05
I, 2.190-1075 2.402.107°
EC 5.832:10°3 7.114-107°

*Aluminum is assumed.
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Fig. 2.4. Effect of twist on natural frequencies of nonrotating blades.
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while the third frequency in Fig. Z.5 is a new one introduced by the presence
of torsion. It is seen that twist has little effect on the third and fourth
frequencies shown in Fig. 2.5. A small difference between the results in Ref.
1 and the present results is introduced by the inclusion of rotary inertia

in the present analysis.

The results for blade No. Z presented in Fig 2.6 show that the funda-
mental frequency is essentially unchanged by the presence of torsion when com-
pared with results for a similar blade reported in Ref. 1. For this blade the
fundamental mode is predominantly flapwise bending The second and third modes
for the untwisted, nonrotating blade are coupled flapwise bending and torsion,
and the fourth mode is uncoupled chordwise bending. When rotation and twist
are added, the three higher modes exhibit considerable coupling, and it be-
comes difficult to reach any general con-lusions. When compared with the re-
sults in Ref. 1 for a similar blade without torsiosn, it is seen that the ef-
fect of the presence of torsion is to introduce a new frequency and to modify
the other two frequencies a moderate amount ™mat these two frequencies are
not modified more by the presence of torsion is to be expected since the coupl-
ing for this blade {and also for blade No 1), as represented by the amount
of offset between the mass and elastic axes, is relatively small.

The neglect of rotary.inertia has a negligible effect on the natural fre-
quencies except for those cases in which there is chordwise bending. For exam-
ple, in the case of the untwisted beam No. 2 the only frequency which is ap-
preciably affected is the uncoupled chordwise bending frequency. The magnitude
of this effect is shown in Fig. 2.6.

The effects of centrifugal force coupling on beam No. 2 are shown in
Fig. 2.7. Curves with and without centrifugal force coupling are shown for
© = 0° and 30°. Only the © = 0° case is shown for the second frequency to
avoid confusion in plotting. The © = 30° case for the second frequency is
modified by a slightly smaller amount. The © = 0° case which represents
uncoupled chordwise bending {(the fourth frsguency for the nonrotating beam)
is essentially unaffected, as is the 6 = 30° case for the third coupled fre-
quency. It can be seen from these results that centrifugal force coupling
can have an appreciable effect on soms of the vibration characteristics.
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3. SIMPLE MODEL ANALYSIS

SYMBOLS
ay,as functions defined immediately following Eq. (3.13)
e offset of mass c.g. from supporting rod, positive forward
e nondimensional form of e, &/r
> > >
i,j,k unit vectors along the x,y,z axes respectively
I mement of inertia of mass m about supporting rod
I moment of inertia of mass m about its own c.g.
Ip moment of inertia of flywheel
K kinetic energy of system
ko stiffness of bending spring
k¢ stiffness of torsion spring
m mass
Mp shaft torque
M& nondimensional form of Mm, MT/mreﬂz
e differential operator
r length of supporting rod from shaft to mass m
->
R radius vector from origin to element of mass dm
t time
1) potential energy of system
> 'y
v velocity vector of mass element dm
-
v magnitude of v

3L




X,¥52

Xps YFs 2F

'] ®©. s
[2]

e+

axes fixed to supporting rod and mass assembly
y-coordinate of mass element dm

stationary axes

orientation angle of bending hinge axis

angle simulating built-in twist

built-in coning angle

phase lag of motion in ¢-coordinate relative to motion in ©-
coordinate

elastic displacement about bending hinge
pseudo-static value of ©

departure of © from 6g

amplitude of 5; also initial value of ©

nondimensional radius of gyration of mass m about supporting rod,

NI/mr2

nondimensional radius of gyration of mass m about its own c.g.,

NIg/mr2

nondimensional form of t, Qt

elastic displacement about torsion hinge
pseudo-static value of ¢

departure of ¢ from ¢s

initial value of 8

initial value of &'

amplitude of Z

angular displacement of shaft

angular velocity vector of x,y,z frame
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Wy, Wy, Wy components of & along the x,y,z axes, respectively

w natural frequency of characteristic oscillation
wy ,dp first and second natural frequencies of characteristic oscillation
Q rotational velocity of shaft

DESCRIPTION OF THE MODEL

In order to examine some effects of nonlinearity and Coriolis forces in
the free vibrations of a rotating elastic blade in coupled bending and torsion
and to consider the effects of certain parameters on the static deformation of
the rotating blade, a simple model with a small number of degrees of freedom
is set up and analyzed.

The model consists of a rigid weightless rod on one end of which is mounted
a mass and the other end of which is connected to a rotating shaft. The connec-
tion to the shaft is through a hinge with axis normal to the rod and set at an
angle to the shaft. A spring, restraining motion about this hinge, simulates
bending stiffness. In addition, the rod is free to rotate about its own axis
against the action of a spring, which simulates torsional stiffness. The mass
is assumed to be distributed along a line normal to the rod, simulating the
major principal axis of a blade cross section, with its center of gravity dis-
placed from the rod, simulating an offset of the mass axis of the blade from
the elastic axis.

The orientation of the model relative to a set of fixed axes and the gen-
eralized coordinates defining its configuration are shown in Fig. 3.1. The
final orientation is reached by aligning the model initially with the fixed
axes and then executing a sequence of rotations. The fixed axes Xps Yps» Z
form an orthogonal set oriented so that the xp-axis is coincident with the
shaft centerline. Their origin is at the intersection of the rod and the
shaft centerline and is coincident with the origin of the model axes x, y, z.
The x-axis lies along the rod, the y-axis is parallel to the line along which
the mass lies, and the z-axis completes the orthogonal set.

The model is initially aligned so that the x, y, z axes are coincident
with the xp, yp, zF axes, respectively. The following rotations, positive

in the right-handed sense, of the x, y, z frame are then executed in sequence:

1. A rotation about the zp-axis through the angle ¥ to the position x,
Y1, 21+ V then defines the shaft rotation.

2. A rotation about the y; -axis through the angle -y to the position xo,
Y2, Z2. -y then defines a built-in coning angle.

36




Bending Hinge Axis

Z¢, 2
Mass, parallel to
y - Axis
e x" x

®haft

Axis Supporting Arm
and Torsional

— ——Xg, X3 Hinge Axis
v
N\
\
N x,
Flywheel

Fig. 3.1. Model coordinates.

3. A rotation about the xg-axis through the angle Q to the position xa,
¥a, za. The ys-axis then defines the position of the hinge axis.

4. A rotation about the ys-axis through the angle -0 to the position x4,
Y4, Z4. This represents a rotation about the hinge axis simulating
bending displacement.

5. A rotation about the xy-axis through the angles B and ¢ in sequence
to the final position x, y, z. The angle B simulates built-in twist,
and the angle ¢ elastic twist.

The angles Q, B, and y are constants and constitute parameters in the

problem. The angles V, @, and ¢ are generalized coordinates representing
shaft rotation, bending, and torsional displacement, respectively.

DERIVATION OF THE EQUATIONS OF MOTION

The equations governing the motion of the model are now derived using
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Lagrange's equation. Toward this end it is necessary to obtain an expression
for the kinetic energy of the system in terms of the generalized coordinates.

Assuming a flywheel of moment of inertia Iy to be mounted on the shaft,
and defining m as the magnitude of the mass mounted on the rod, the kinetic
energy of the system may be written,

- 2+ 1
K = = IpV +2‘Z:Vedm (3.1)

where v is the magnitude of the velocity vector ¥ of an element of the mass m.

v may be developed from the relation,
> > »>
v = wxR (3.2)

where ® is the angular velocity vector of the x, y, z frame and R is the radius
vector of dm. Substituting

& = o d +apd + ak (3.3)
R = ri+yJ (5.4)

> > >
where i, j, k are unit vectors along the x, y, z axes, respectively, into Egq.
(3.2) the following is obtained,

-+ -> -+ >

Vo= = ywpl o+ rwg + (ywgeroyp)k . (3.5)
Thus,

vV o= PP+ 2P+ (yux-rwy)® (3.6)

and Eq. (3.1) may now be written,

K = = IF\lrz + %-mra(w?ﬁwi) + %. I((Diﬂbi) - mrew, ay (3.7)
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Neglecting gravity forces, the potential energy of the system may be written
as follows,

1 1
U = 3 kge?® + 5 k¢¢2 (3.9)
where kg and k¢ are the spring constants of the springs restraining motion in

© and d coordinates.

Substitution of Egs. (3.7), (3.8) and (3.9) into Lagrange's equation,
d (oK oK U .
—— s - — e — = O (1:1 2 ) -10
at <$Qi og;  9aqy &2 (3-10)
where q; = 0, g = ¢, qs = V¥, yields the following differential equations,

[mr2+1 sin2(B+¢)]6 + [mre cos(6+¢)]¥ + [}mrz sin @ cos y+mre ap cos(B+d)

+

I sin(p+4){-sin(p+d)sin @ cos y+a; cos(6+¢)ﬂ ¥

+ EZI sin(p+d){cos(p+d)sin cos y+ a1 sin(p+d))-2mreas sin(B+¢)] 8@

+ [21 sin(p+d)cos(p+d) 104 + [-rme sin(p+d) 12

+ [mrealazmre[al cos(p+d)sin a cos 7+(a2-a2)sin(p+d))

- Iaz sin(B+g)(cos(B+d)sin & cos y+ay sin(5+¢)}] S

+k® = 0 (3.11)
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[mre cos(p+g) 16 + I;zg + [Iag-mre(cos(5+¢)sin Q cos y+a, sin([3+¢)}] ¥

+

|:2mrea2 sin(p+d)+21 sin(p+d4) (cos(p+d)sin a cos y+a, sin(B+¢)):l oy

[-I sin(p+g)cos(p+d)16°

+

+

[mreag{-sin(ﬁ+¢)sin a cos y+ay cos(p+d))

+

. .2
I{-sin(B+d)sin @ cos y+a; cos(p+d)}{cos(B+g)sin & cos y+a, sin(ﬁ+¢)}] v

+

k¢¢ = 0 (3.12)

[—mzsin @ cos y+mreap cos(B+g)+I sin(B+g)(-sin(p+#)sin @ cos y+ai cos (B+¢)]]5

+ [Iag-mre(cos(6+¢)sinacos y+ai sin(f3+¢)]:| ng

[IF+mr2(sin2 a cos® y+af)-2mreas{cos(B+¢)sin a cos y+ay sin(p+d)]

+

+

Ia§+I(-sin(B+¢)sin Q cos y+aj cos(6+¢)]2] v

+

|:—2mr2ala2+2mre[a§ sin(p+g)-ay cos(p+g)sin @ cos y-aiaz sin(p+d))

+

2Jajaz-2Ias cos(p+d)(-sin(p+d)sin a cos y+ay cos(p+ ;zf))] o

+

[—21nrea2[-sin(6+¢)sin a cos y+ay cos(B+d))

2I{cos(B+d)sin @ cos y+ay sin(p+d))(-sin(p+ 4)sin a cos y+a, cos(B+¢)}]s¥\]!

+

[21 cos(B+d) (-sin(p+d)sin @ cos y+a; cos(B+¢)}:| O;é

-+

[mre-a; cos(p+d)-Iaz sin(B+¢)c03(B+¢)]é2

+

Enre[sin(6+¢)sin a cos y-a; cos(Bﬂﬁ)]‘J 52

= 0 (3.13)
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where

-sin © sin y + cos © cos @ cos ¥y

ay

ap = cos @ sin y + sin © cos & cos ¥y

SPECIALIZATION TO THE CASE OF CONSTANT SHAFT SPEED

The problem 1s now specialized to the case of constant rotational velocity
of the shaft by setting v = 0, ¥ = Q, and the equations are put into a nondimen-
sional form by defining the nondimensional parameters,

0]
It
-
&l
~
=

B - B - Ligh?
2 R A

and introducing the nondimensional time variable,

Qt

=
1}

It is seen that p is the nondimensional radius of gyration of the mass about
the rod axis, € is the nondimensional offset of the mass center of gravity from
the rod axis and @y, and @ are respectively the nondimensional natural fre-
quencies in restrained bending and restrained torsion when the shaft is not ro-
tating.

Division of Eq. (3.11) by ®mr2 and Eq. (3.12) by @ I now yields,
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[1+52 sin®(p+d) 10" + & cos(p+d)g"

-+

[}252 sin(p+g){cos(p+f)sin a cos y+a; sin{p+d))-28ap sin(B+¢)} 4!

+

25° sin(B+f)cos(p+)0'd' - & sin(p+h)g'®

+

[%1a2+é{al cos(p+¢)sin a cos y+(af-a8)sin(p+g))

5 a2 sin(p+g)(cos(B+f)sin a cos y+a, sin(B+¢)ﬁ
+®e = 0 (3.1k)

8 + = cos(ptg)e" + [? %5 az sin(p+gd)

qqml

+ 2 sin(p+g)(cos(B+d)sin @ cos y+ay sin(6+¢)}] o'

- sin(p+d)cos(B+g)o %+ [gﬁ'ae(—sin(ﬁ+¢)sin a cos y+ay cos(B+g))

+ [-sin(B+¢)sin a cos y+a; cos(B+d)}(cos(B+d)sin & cos y+a, sin(6+¢)ﬂ

where primes denote differentiation with respect to 7, and a; and az are as
defined in the preceding section.

; Recognizing that constant shaft speed represents the limiting case of in-

\ finite flywheel inertia, the term IFW in Eq. (3.13) can be seen to remain finite
‘ and equal to the shaft torque, which may then, from Eq. (3.13), be written in

! the following nondimensional form,
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Mp = [;sin @ cos y+8ap cos(p+g)

+ 72 sin(p+d){-sin(p+d)sin a cos y+ay cos(a+¢)]] e"

+ [§2a2:§[cos(a+¢)sin O cos y+aiy sin(a+¢)}] g"

+ Eeala2+2€{a§ sin(p+g)-a1 cos(P+d)sin & cos y-ajap sin(p+d))

+ 25a100-25%2 cos(pig) (-sin(B+h)sin & cos yvay cos(pig)]] @

+ I:—2§a2[-sin(3+¢)sin a cos y+ay cos(p+d))

- 2P2(cos(B+g)sin O cos y+ay sin(p+d)}(-sin(p+d)sin & cos y+a, cos(5+¢))]¢v

+ 292 cos(p+d) [-sin(p+d)sin & cos y+a1 cos(p+d)]e'g"

+ [Bay cos(p+d)-p2az sin(p+d)cos(p+d) 6’2

+ €[sin({p+d)sin & cos y-a1 cos(p+g)]g'2 (3.16)
where

and Mp is the dimensional torque.

To facilitate solution, it is desirable to rearrange Eqs. (3.14) and (3.15)
in the form,

£10" + fag" = -£30'@' - faf' - f5¢'2 - c_'"’2bg - fe (3.17)
f7O" + ;zf" = -fgo' - f9@'2 - E)%¢ - 10 (318)

where
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£ 1 + o2 sin®(p+g)

s g cos(B+p)

fa = 2p sin(p+g)cos(p+g)

fa = -25° sin(p+d)(cos(B+d)sin a cos y+a; sin(p+d)}-08as sin(p+d)
f5 = -€ Sin(6+¢)
fs = ajap + E(ay cos(P+d)sin A cos y+(ai-a3)sin(p+d))

- P2az sin(p+d){cos(B+d)sin @ cos y+a; sin(B+g))

fr7 = .§;§COS(6+¢)

fg = 2 é%; ap sin(B+g)+2 sin(B+g)(cos(p+d)sin & cos y+a; sin(B+d))
fo = -sin(p+g)cos(p+g)

f15 = gg-ag{-sin(ﬁ+¢)sin a cos y+ay cos(B+d))

(-sin(p+g)sin @ cos y+ay cos(B+d)}{cos(B+d)sin @ cos y+a; sin(B+d)}

+

Solving Egs. (3.17) and (3.18) for @" and ¢" in terms of © and ¢ and their
first derivatives ylelds the differential equations in the following form,

e" = ;——%7;7-[-fSdi’-f4d'~f5¢’2-w€G-fﬂ+fgf89'+f2f99'2+f2&§¢+f2f10] (3.19)
1-i2+7

" = o [-Fafe0'-F1fe0 2-F aRg-F1F10+E 77100 ¢"

+

f7fap +F7T5g 240700+ 7T | (3.20)

Equations (3.19) and (3.20) are now in suitable form for solution on a
digital or analog computer.
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SOLUTION OF THE PSEUDO-STATIC PROBLEM

It is of interest to determine the static configuration of the rotating
model, that is, the static displacements under the action of centrifugal
forces. This problem may be termed the pseudo-static problem. Its solution
permits the setting up and solution of linearized differential equations for
small motions about the pseudo-static configuration.

The appropriate equations are obtained by eliminating all terms contain-

ing derivatives of © and ¢ from Egs. (3.17) and (3.18), yielding,

afe, + s = O (3.21)
Whs + f10 = O . (3.22)

These equations are nonlinear, with fg and f;o being transcendental func-
tions of the dependent varisbles. Since it is not feasible to obtain an ana-
lytical solution in closed form, the following iterative procedure was applied.

Equations (3.21) and (3.22) are linearized with respect to departures AQ
and A¢ from trial values ©p and én, respectively, of the variables, yielding,

E%Qn + E%AO + fgn + %g%) A0 + <§§§;> A¢ = 0 (3.23)
n n

—2 of of
-2 10 10
Wg + T AP + Fip. + <le Ae + <le; Ad = O (3.24)

where subscript n denotes values at © = ©,, ¢ = @,.

Equations (3.23) and (3.24) are now rearranged in the form,

(@+11,)80 + f12p88 ~fopn - B0, (3.25)

f13p80 + (@f+f1ap)84 = -Tio, - ahy (3.26)

where
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3e

fi1 =
)
= af - a8 - e{ap cos(p+d)sin @ cos y+hkaas sin (B+¢)}
- B° sin(p+g) (a1 cos(B+f)sin @ cos y+(aT-a2)sin(p+d))
of,
f = =6
12 Y
= €{-a; sin(p+d)sin a cos 7+(a§-a§)cos(ﬁ+¢)]
- P2an [[c052(5+¢)-sin2(8+¢)]sin Qa cos y+2a; sin(B+d)cos(B+¢)]
fia = S0
00
= % (-ay sin(B+d)sin a cos 7+(a§-a§)cos(ﬂ+¢)]
- ao [{cosa(6+¢)-sin2(6+¢)}sin a cos y+2a;y sin(B+¢)cos(B+¢)]
_ 10
fi4 = _ad
= - §—2 as{cos(p+¢)sin Q cos y+a; sin (B+§))
- {cos(p+d)sin a cos y+a; sin(ﬁ+¢)]2
+ (-sin(p+d)sin a cos y+ay cos(B+d))®

Solution of Egs. (3.25) and (3.26) for A@ and A¢ yields,

-e4 ep teg 1o
26 = T (3.27)
ean
-eg ey _tey T
A¢ - sn€1intC4apnlia, (3.28)
83n

where
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e; = E% + 11
-2
ez = W * T4
ea = eez - f12f33

es = Eion + fg

es = w-2t¢n + fio

Equations (3.27) and (3.28) may be applied in conjunction with the iter-
ation formulae,

On+1 = O + 06 (3.29)
¢n+]_ = én + A¢ (350)

using as initial values, 9; = O, ¢1 = 0. The process has been found to con-
verge rapidly in the cases that have been considered in the present work.

FORMULATION AND SOLUTION OF THE LINEARIZED EQUATIONS
In order to assess the significance of nonlinear effects in the problem
under consideration, it is desirable to obtain also solutions to linearized

equations for small perturbations © and ¢ from the pseudo-static configuration.

Application of small perturbation theory to Egs. (3.17) and (3.18) yields,

£140" + (To+ £114)0 + fogf" + f48' + fragd = O (3.31)
f7,0" + fg8' + £13.0 + g + (@+f145) = O (3.32)
in which subscript s denotes values corresponding to the pseudo-static config-
uration @ = 65, ¢ = 4.

Putting Egs. (3.31) and (3.32) into operator form, using symbol p to de-
note the differential operator, and expanding the determinant of coefficients,
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the following characteristic equation is obtained,

cip? +cop® +c3 = O (3.33)

where

Ca = fls - fZSf—’s
—-2 -—
ca = f1(@E+f1ag) + T + f11g - fo fi1ag - Fr fiag - fa Tag
_ (2 —2
ca = (@ptfiag)(WE+fray) - fia Fiag

The terms in p and p3 are seen to vanish.

The roots of this equation are
1
i = g7 (e +VcB-heies)
1
12 = o7 (-c2 -VcB-heics)

and the characteristic frequencies are given by

wy = N-pI (3.34)
@ = N-pz . (3.35)

The characteristic mode shapes may be determined by assuming a solution
of the form,

® = B, cos @r (3.36)

Z' = 8; cos wr + éé-sin wr = 8; cos (WT-€) . (3.37)
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introducing Egs. (3.36) and (3.37) into Eq. (3.31), and equating the sum of
the coefficients of the cos T and the sin ®T terms respectively to zero, the
following result is obtained,

- = (faq® ‘f12s)( flsw ﬁbb+f113)
= .38
do/go (fasdfg-flgs + fiswa (3 > )

Zl)a ( fls(_l)2+(-l)§+flls )

- Zup - Y
)T+ fu @

(3.39)

(fzs -flas
where ® = @y, Up.

The mode shapes may be expressed alternatively in the form,

7./8, = {"0 <¢°>} (5.10)
€ = tan~ (@-—> (3.41)

where, from Eq. (3.37) it is seen that 5;/50 is the relative amplitude of dis-
placements in the two coordinates and € is the phase lag of the oscillation in
the d-coordinate relative to that in the ©-coordinate.

A solution involving only one characteristic mode of oscillation may be
obtained by selecting as initial conditions,

6 = 6,+8,, 4 = do+do, 4 = g (3.42)

where 50 may be selected arbitrarily within the limitations imposed by the as-
sumption of small perturbations, and ¢o and ¢6 are then determined from Egs.

(3.28) and (3.39).

It should be noted that the existence of a phase difference between oscil-
lation in the two coordinates is associated with the presence of the terms
f4s¢' and fesﬁ' in Egs. (3.31) and (3.32) respectively. These terms originate

in the terms in OV and ¢V in Egs. (3.11) and (3.12), which are due to the pres-
ence of Coriolis forces.

DISCUSSION OF RESULTS

A series of computations on the simple model were performed using an auto-
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matic digital computer. There computations were limited to the case of con-
stant rotational velocity of the shaft and zero built-in coning angle (y = 0).

The pseudo-static configuration was determined by means of the iterative
procedure developed earlier, and corresponding characteristics of the linear-
ized system for small perturbations from this configuration were computed. In
each case additional computations were performed in which the terms f4s¢' and
fgg®' in Egs. (3.31) and (3.32) were omitted. As discussed previously, these
terms represent the influence of Coriolis forces, so that a comparison of re-
sults obtained with and without their inclusion provides a means of assessing
the importance of the Coriolis forces.

These results are presented in Figs. 3.2 to 3.8 inclusive. Figures 3.2
and 3.3 show the effect of varying the mass offset parameter &, with the param-
eter Eb, representing the nondimensional radius of gyration of the mass about
its center of gravity, and the parameters, &, B, E% and 5t being maintained
constant. Since the parameter p must be varied accordingly, the maintenance
of a constant value for &t implies that the variation of e does not involve
merely a shifting of the mass relative to the supporting arm but involves also
changes in m or kg or both. The value of po selected for this case represents
a rather extreme value, applicable to a short, wide blade.

Figure 3.2 shows the substantial pseudo-static deformation occurring in
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| 2 0.1
t
(o] —10
0.3

Fig. 3.2. Effect of mass offset on pseudo-static
displacements of model. a = %0°, B = 15°, wy =
1/3, @& =1, po = 0.1732.
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this case. It should be noted that the static twist decreases with increase
in offset, when the center of gravity of the mass is behind the elastic axis.
This occurs despite the fact that the relative values of the moment of inertia
and torsional stiffness about the supporting arm remain the same because of
the constancy of @, which fact implies that centrifugal twisting moment, be-
fore deformation, remains the same. It must be concluded that the variation
in twist is associated with a component of centrifugal force normal to the
coning surface on which the supporting arm revolves. This effect is intro-
duced through the term in mrey2 in Eg. (3.12) and terms deriving from it in
later forms. It has been called "centrifugal force coupling" in Ref. 2, and
shown there to have a substantial effect on natural coupled frequencies of vi-
bration. In the present case, since y = 0, the coning of the supporting arm
is associated solely with the displacement ©g. With positive O, and a positive
value for (a+B+¢s), this effect opposes that of centrifugal twisting moment.
It can be expected to be more pronounced in the case of blades with built-in
coning angle.

Figure 3.3 shows the effect of mass offset on the natural vibration char-
acteristics of the system linearized with respect to the pseudo-static config-
uration. As can be expected, it is seen that the increased coupling between
bending and torsion associated with increasing mass offset separates the natural
frequencies and alters the natural mode shapes.

It is seen also that the Coriolis forces introduce substantial phase dif-
ferences between motion in the two coordinates, particularly in the case of
the first or predominantly bending mode, where the phase angle is large through-
out the range of € considered. In the case of the second mode, where torsional
motion predominates, the phase angle is substantial only at small values of e.
When e is zero the only coupling between bending and torsion is through the
Coriolis forces, and the phase difference is then 90°, d leading © by this
amount in the case of the first mode and lagging by this amount in the case of
the second mode. Furthermore, the Coriolis forces are seen to have a- substan-
tial effect on the mode shape of the first mode and a somewhat modest effect
on the corresponding frequency. The corresponding effects on the second mode
and frequency are seen to be small or negligible. It should be noted here that
the apparent absence in some cases of curves associated with neglect of Coriolis
forces is explained by the fact that such curves are indistinguishable from

the corresponding solid-line curves, and the effect of these forces is thus very
small.

Figures 3.4 and 3.5 provide results corresponding to those of Figs. 3.2
and 3.3 for a different case, namely one involving a much smaller value of
Po and consequently more realistic in relation to propeller or helicoptor
rotor blades. Similar trends are observed, except that Coriolis force effects

are considerably reduced, but still substantial with respect to phase differ-
ences in the first mode.
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Fig. 3.3. Effect of mass offset on natural vibration characteristics
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Figure 3.6 shows the effect of varying the bending hinge orientation
angle while maintaining the orientation of the principal axis of the mass fixed.
This involves varying @ and B so that Q+f remains constant, and simulates a sit-
uation in which mean blade angle is kept constant while built-in twist is varied.
All other parameters were maintained constant. Curves of ©g and ¢s are not
shown, as variations in those parameters were small. For a variation of & from
15° to 45°, Og varied from 0.78° to 0.97° and gy varied from -6.50° to -6.60°.
It is seen from Fig. 3.6 that first mode characteristics are affected very sub-
stantially by changes in &, the phase difference between the 6 and ¢ motions
especially varying over a very wide range. The effect on second mode charac-
teristics is much smaller, although still considerable.

Figures 3.7 and 3.8 show the effect of varying the rotational velocity of
the shaft while other parameters remain constant. The information in Fig. 3.7
is principally of value in estimating the pseudo-static torsional deformation
corresponding to a given rotational velocity. This deformation can be expected
to depend primarily on the parameter E& in the case of a blade without built-
in coning angle, although from results discussed earlier it can be seen also to
depend somewhat on the parameters e and wp. From Fig. 3.7 it can be seen that
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the torsional displacement will exceed 20% of the initial blade angle (Q+B) if
w¢ is less than about 2, that is, if the rotational velocity is greater than
about one-half the value of restrained torsional frequency corresponding to zero
rotational velocity.

Figure 3.8 indicates an increasing prominence of torsion relative to bend-
ing in both modes as rotational velocity becomes large. It indicates further
a marked sensitivity of the phase difference between coordinates in the first
mode to variation in rotational velocity, at least in a limited range of rota-
tional velocity. The phase angle is seen to approach zero at large values of
rotational velocity. A somewhat different situation is seen to exist in the
case of the second mode, where the phase angle increases with increase in ro-
tational velocity.

Digital computer solutions to the nonlinear differential equations were
also obtained, using a Runge-Kutta procedure. Initial conditions were estab-
lished on the basis of natural vibration characteristics determined from the
linearized equations, that is, by applying Egs. {3.42), using values from Egs.
(3.38) and (3.39) and the pseudo-static displacements. With such initial con-
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ditions, the linearized system responds in only one of the natural modes, and
comparison with the corresponding response of the nonlinear system provides a
means of assessing the extent to which nonlinear effects distort the motion.

Results were obtained for only one case and are shown in Fig. 3.9. Figure
3.9(a) illustrates the response of the first mode when the initial bending dis-
placement from the pseudo-static configuration is 10°. Displacement in the
bending coordinate predominates in that mode and its time history is seen to be
distorted only slightly by nonlinear effects. There is a slight increase in
period and a very slight but irregular variation in amplitude. The torsional
response is seen to be strongly influenced by nonlinear effects in a manner
which suggests that there is substantial coupling with the second mode. The
slight variation in amplitude of the bending motion is likely associated with
this coupling.

The response in the second mode for an initial bending displacement of 2°
from the pseudo-static configuration is shown in Fig. 3.9(b). In this case,
displacement in the torsional coordinate predominates and has an amplitude of
about 22.5°. It is seen that there is an appreciable increase in period caused
by nonlinear effects, but otherwise only a slight distortion of the motion in
both coordinates. Again, it is likely that this distortion is due to coupling
with the first mode.

The solutions were not carried far enough to ascertain whether there is
a decay or divergence of the oscillations. The fact that such may exist is not
inconceivable, in view of the fact that the system is not necessarily conserva-
tive. It has been seen to be conservative when linearized with respect to
small perturbations from the pseudo-static configuration. However, with impo-
sition of the condition of constant shaft rotational velocity it is a driven
system, and it is possible that nonlinear effects may result in a transfer of
energy to or from it through the shaft.

The results obtained indicate that, at least for the case considered, any
such divergence or decay will be small and probably represent a negligible ef-
fect in comparison with aerodynamic effects in the case of an actual blade.

It is possible that a different choice of parameters or the introduction of
built-in coning may produce a different result. This requires further inves-
tigation.

On the basis of the present results it appears that the effect of Coriolis
forces is likely to have a greater practical significance than the effect of
nonlinearity, particularly since it does not depend upon the existance of large
motions. This relates mainly to the problem of blade flutter, since the flutter
phenomenon is highly sensitive to phase differences between motion in bending
and torsion. The phase differences associated with the presence of Coriolis
forces may conceivably alter the balance in the flutter problem sufficiently to
change the conditions for flutter significantly.

59



"T'0-=3 ‘20=0 ‘T="% ‘¢/T =% ¢ ,61- =¢ ‘00 =0 -suoryenbs
TeI3USISIITP PeZ]IBSUIT PUB JIBSUTTUOU Lq pPaufWwJIal}ap s®B [opowl Jo ssuodsay °*6°¢ *BTd

JISNOdS3IY 3ICON LS¥id Ol 3LVINHOMddY SNOILIANOD TVILINI (D)

2

suoiONb3 PeZIiDBUL] Of UOYN|OS ~— — —

suoljonb3 JOSUILUON Of UOCHINIOS

$334930-¢

$33¥93q -6




*pepniouc) °6°¢ *ITd

ISNO4S3IY¥ JAOW ANOD3S OL 3ILVINJO¥ddY SNOILIONOD VILINI(Q)

suolonb3 peziibaul] 04 UOYNIOS =———=—
suoljonb3 JDBUI|UON O} uOiiNj0S

334930-¢

$33493a- §

61




Other effects which have not been considered in the present study, but
which can be expected to be of considerable importance in some cases, are
those of nonlinearity of the torsional spring and of centrifugal tension on
torsional stiffness and on pseudo-static deformation, as discussed in the
Introduction. Their introduction into the present analysis should not re-

sult in undue complication and would represent an appropriate and desirable
extension of the present work.
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L. CONCLUDING REMARKS

A practical numerical method, suitable for implementation on an automatic
digital computer, has been developed for determining the natural vibration
characteristics of twisted rotating and nonrotating blades in coupled bend-
ing and torsion. A limited numerical study indicates that the method is an
efficient one for including the effects of bendimgtorsion coupling and pre-
twist. The nature of the coupling is complicated and a much more extensive
parametric study would be needed in order to draw general conclusions. It
can be said, however, that centrifugal force coupling can have an appreciable
effect when there is a substantial offset of the mass axis from the elastic
axis.

In order to investigate some effects of nonlinearity and Coriolis forces
in the rotating blade vibration problem, & study has been made of a simple
model with a small number of degrees of freedom. Computations performed on
this model indicate the following:

(1) There is an effect of centrifugel force, apart from the familiar
centrifugal twisting moment, on the torsional deformation when the mass axis
of the blade is offset from the elastic axis. It may, in some cases, modify
the static deformation of the rotating blade substantially, and tends to in-
troduce additional coupling between bending and torsion when the blade is
vibrating, as discussed also in the case of the continuous blade.

(2) The presence of Coriolis forces causes a phase difference between
the bending and torsional oscillations which is equal to 90° when the mass
and elastic axes are coincident. This phase difference decreases when the
mass and elastic axes are not coincident, but remains substantial in the
case of a natural mode of the model consisting primarily of bending.

(3) Nonlinear effects for large motions tend to change the natural fre-
quencies of the system slightly and introduce some coupling between the
natural vibration modes associated with solution of the linearized equations.
A limited amount of results did not provide any evidence of decay or diver-
gence of the free vibrations of the model.
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APPENDIX A
DIFFERENTIAL EQUATIONS OF MOTION
The differential equations for free motion of a rotating twisted blade

with offset mass and elastic axes are, from Ref. 2, with some changes in
notation,

1}0Je+Tk§+EBl(B')2]¢' - EBeB'(5§ cos B+d, sin B{}”

¥

TeA(8§ sin B-B, cos B) + szxe(-6§ sin B+8, cos B)

+

Poe(sin B)Sy +Q 2p[(k%-ki)cos 2B+ee, cos BIg

- . . 2
p(kz+kn)¢ - pe(Sy sin B-B, cos B) = + (TkAB')

+

sz[(kf-kﬁ)sin B cos Bt+eegy sin B)

EEIl cos® B+EI» sin® B)B, + (EI2-EI;)sin B(cos B)S;
! 2 ]
- Tepd cos B - EB2B'¢' sin B] "o (Tbé) - (Q pxed cos B)

+ p(gz+e8 cos B) (Tey sin B)" + (szxe sin B)' (A1)

1"

(Tep sin B) + (Poxe sin B)'

+ p(gz+88 cos B)

[(EIz-EIl)Sin B(cos B)By + (EIy sin® B+EIl cos? B)5§
+ TeA¢ sin B - EBaB'd’' cos Bﬂ " . (TS&)' + (Ppxed sin ﬁ)'
+ Pped sin B + p(gy-ea sin B) - ﬂ295y = +(Tep cos 3)"

+ (Ppxe cos B)' + QRp(eq+e cos B)

An explanation of the origin of the various terms in the equations is
given in Ref. 2. The integrals which define the section constants B; and Bz
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are given below

By

[ (P+2a2) (1242 )aa

(A2)
Bz

[ (n%+43-k% )ndA

All other symbols are defined in the list of symbols. The coordinate system
is as shown in Fig. 2.1.

It should be noted that Egs. (A1) are for small displacements from the
undeformed configuration of the blade when it is not rotating. The analysis
of the present report linearizes the problem with respect to small displace-
ments from the steady-state deformed configuration of the rotating blade.
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APPENDIX B

RESULTANT LOADINGS

The resultant loadings per unit length in the x, {, and n directions have
been obtained in Ref. 2 for a rotating twisted blade with offset mass and
elastic axes. The loads include the inertial, centrifugal and Coriolis force
terms. In the notation of the present report they are

px = -p(ii-gPu) - 20p8, sin B + 20pB2 cos B
- peBiB' + peBh + 02ped,p' - Ppedh - 20ped sin B + O px
Py = -pgg + 2p(-851 sin B cos B+dz cos2 Bre, cos B)
- 20pi cos B + Ppe cos? B - Pped sin B cos B
- ﬂapeo¢ sin B - (Fped sin B cos B + 20pe cos B(-51p'+5a)
Py = “06y - QPp(-51 sin® Pdz sin B cos B+e,sin B) + 20pi sin B
- peB - ®®pe sin B cos B + Pped sin® B - 20pe sin B(-5,8'+52)
(B1)
- Ppegd cos B - Pped cos® B

qy = -Qape [}-61 sin P+B2 cos B+eg) sin B + eo¢ cos B]

+ pe(-8,+200 sin B) - 2 [KIE'In) sin B cos B + (Ig-In)d cos 25]
- (I§+In)3 - 29(I§-In)(-61 sin B-8,B'cos B+bs cos PB-52B8' sin B)sin B cos B
+ 20(1? sin® B+I% cos® B)(8, cos B-8.8' sin B+éé sin B+6pB' cos B)

Q = PI,(514628") - In(5i+523') +20I,¢ cos B

qg -ﬂgpe(x+u) + peli - EQeQ(-él sin p+6a cos B)

- 921;515' + QaI;Ba' + Igglﬁ' - Ig.52' + 29.1;5 sin B
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In the following, we eliminate terms in px which are dependent on dis-
placement variables and their derivatives, since these lead to nonlinearities
in subsequent analysis, and terms in all force and moment expressions which
involve u and its derivatives and first derivatives of the remaining displace-
ment variables. We also eliminate terms involving B', since these terms arise
when Bi and Bé are derivatives referred to the axes 7 and { rotating about the

x axis. In
derivatives

the lumped parameter treatment, Si and Sé can be considered to be
with respect to locally fixed axes.

oFox

Px =
P, = -8z - @Pp sin B(cos @1 + P (cos® 2
- 02p sin B(2e cos Bteg)d + PBp cos Ble cos Bteg)
pc = -pBy + 9Pp (sin® @by - 9Pp sin Bleos B b2 - oe;g
2 r -] 2 .
+ Q@ pe(sin® B-cos® B) - e, cos B @ - ©2p sin B(e cos B+eg)
(B2)
ax = -pegl + Ppe (sin® A1 - PPpe sin B os 2
I\ ts
- Qz‘lfeeo cos B+(I§-In) cos 2B pg - (I;+Iq)¢
- O sin B{:peeo+(lc-ln) cos ?}*
qT] = QZI,QS]_ - In'é)_
q = 921@2' - Igsé - Ppex
Now, if we consider the matrix equation
By = [Flxlly (B3)

where (A} is
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and [A)N refers toAthe value of these gquantities at station N just outboard
of the mass, and [A]N refers to the values just inboard of the mass, it fol-
lows that

(AL LN

= Vl(N) + D(N)I(N>(w2+ﬂ2 sin? 6)51(N) - D(N)I(N)Qa cos B Ein 5)5'2(1\])

+ p(N)l(N) [e(N){(JJZ+(Sin2 B-COS2 5)92]"'8092 cos B] ¢(N)

- p(N)l(N)QZ sin B(eo(N)+e(N) cos B)

A
GO0 LM 0, 0,00, o0

= ) oM, (0g2, (W) () o () () (2251 ()

Ay 5. (N)
AL 5, (M)
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4.

N, o (W,m

= Vz( + pn

woM o Mgz i g eos pp Y

p(N)l(N)(m?+92 cos® (w)

B)d2

oM (W2 s1n plelM2 cos B+eO(N))¢(N)

p(N)l(l\UQ‘z cos B(eO(N)+e(N) cos B)

W, o TR _ 5 (00

W, (N () (), (0, (N) (Dga
52 (V)

62(N)/

NONNCONCE

0,00 00202 a1u gy, V)

p( ), (W) (M2 o B bin B)an) N Q(N)
[(In+I§)(N) (W2 4 (1, ;)(N)(cos B-sinz p)2 Vg2

p (MM M) Mgz oq 5] ¢

(B5)

(In-IC)(N)l(N)Q2 sin B cos B - p(N)l(N)e(N)eo(N)Qg sin B

¢(N)
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APPENDIX C

DEFORMATION OF A BLADE SEGMENT

Consider a segment of a weightless beam for which the values of the mo-
ent, torgue, shear, and/EQnsion at a station N are given as Ml(N), MQ(N),

m
QWY vV, vl and T'"/. Then moments and torques at other points along
the segment are

My = Ml(N) ¥ Vl(N)s + T(N)Sl U(N)¢
Me = M)+ v (Mg 4 p(W)s, 4 (Mg (c1)
e - oM,y

where U\N) and W(N) are the contributions of the centrifugal force coupling

as explained in Appendix D, s is the longitudinal coordinate measured from
station N toward the root, and primes denote differentiation with respect
to s. These same quantities in terms of 51 and 8, for a twisted blade are

My = EI1[$;+26'8é+B"52-(B')25%]
Mo = EIZ[%£-23’61—6"61-(B')26%] - Tep - ER2B'd’ (c2)
Q = - [GTe+TkB+EBi(B')?] 4' - TiBp!

+ EBap' [b2-28'61-p"51-(B')%82]

For a straight segmentEqs.(CE) reduce to

My = EI,;8;
Mp = EIz8z - Te, - EBgB'd’ (c3)
. 2 2 2., ' "
Q = - [GJe+TkA+EBl(B') ] g' - Tk,B' + EB2(p')®2
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Eliminating steady-state terms and combining Egs.(Cl) and (C3),

81 - 8181 - azf = Dbis + ba
82 - 83d2 - 8af' - as§ = bas + by . (c4)
aghi' - a7d2 + agd' = -bs
where
() (W)
ay = T by = \LJ-_
EI, EI,
e . (10
ap = b = -2
| EI, EI,
f
| () . Vo (N)
a = =
3 Elo 3 EI>
| : (N)
| s, = H2B b, = M
Elo Elo
(N)
__¥ _ aflN)
as £ bs Q
e - M
ay = EBgp’
N
ag = A() = GJe+Tk12\.+EBl(B')2

These equations may be solved as they stand; however, considerable sim-
plification can be achieved at a modest sacrifice in accuracy by replacing
the term asd by'asyf(N)° This modifies the second of Egs. (C4) to read

82 - azdz - asgd' = Dbas + bg " (C5)

1




where

40

El->

be = ¢(N) *

EI>

The characteristic equation for the new set becomes

where

fo

fa

fa

The roots of this equation

P1,2

When the solution is carried out, with the elements of [A](N)

and s is taken equal to £,

fop* + f1p® + f2 = 0O (c6)

(ae-a4a7)

asag - aglaitas) + ajasar

ajasag - 8pasfg

are then

- - E;_ +

o (c7)

2
L)
fo

the following form for the solution results

5]'.(N+l) f EajAj
J=1
10
(N+1)
81 = E4J'AJ'
J=1
10
, (N+1)
2 = E758; (c8)
J=1

T2

as initial values,




5éN+1)

¢(N+l)

10

Z EejAj
j=1

10
= }: Ei038j

J=1

(c8)

where the Ejj are presented in Eq. (2.6) in the body of the report and Aj are

the elements of [A)(N) given in Eq.

The remaining Ejj elements are
apply across each bay

v, (N+1)
Ml(N+1)
v,2(1\1+1)

M2(1\1+1)

Q.(1\I+1)

(2.1).

found from the following equations which

7 ()

Ml(N) . Vl(N)l

W

G ICIN

Q(N)

(c9)

It should be noted that the bending moment and torque quantities in Egs.
(c9) by definition do not include the contributions of the centrifugal force

displaced to the elastic axis and of centrifugal coupling.

These contribu-

tions are introduced separately through satisfaction of Eqs. (Cl) in the solu-

tion for the deformation variables.
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APPENDIX D

CENTRIFUGAL FORCE COUPLING

As shown in Ref. 2, there is a type of coupling between bending and tor-
sion associated with the presence of centrifugal forces. Explicit considera~
tion must be given to the derivation of the terms assoclated with this coupling.

If x; is used to denote the station where centrifugal force is acting and
x the station where bending moment is measured, the components of bending mo-
ment associated with offset of mass center from the elastic axis of the ro-
tating blade may be written as follows:

My = - cos(B+d) Bpixie; sin(Bi+dy)dxy
F
+ Sin(5+¢)k4 Rpixiey cos{pr+py)dxy
(p1)
R
Mo = - sin(B+¢)\Z1 Poixier sin (Br+dy)dxy

R
- COS(B+¢)L£\ Ppixiey cos(B+gy)dxy

where subscript 1 refers to values at x;.
Assuming ¢ to be a small angle and eliminating higher order terms, Egs.

(D1) become,

My

R
- cos B 02p1x1e1 sin Bydx; + d sin 6k£\ Ppixie; sin Bidx;
R
- cos Bul‘ Q2p1x1e1¢1 cos Bidx;
R R
. 2
+ sin Bklw @ p1x3e; cos Pidxy + 4 cos B Ppixyey cos Padxy

- sin B Qaplxleldl sin 6ldx1 (DQ)
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&

R
- sin B Ppixie; sin Bidx; - # cos BLZN Ppixies sin B1dx;
- sin Bf Ppixie1fy cos Prdxy
X

R
- cos BL/B Bpixie; cos Brdxy + ¢ sin B\Zj Ppixie1 cos Brdxy
X

R
+ cos Bh/\ @®p1x1e1¢1 sin Bidx) (p2)
X

In each case, the first and fourth terms represent steady-state moments.
An examination of Appendix B shows that the term ~0®pex in q will give rise
to these moments. They are taken into account through the element dg in the
(4} matrix.

The third and sixth terms in each component represent the effect of tor-
sional displacement of the blade mass on bending about the torsionally undis-
placed positions of the 1 and &€ axes in the M; and Mz components respectively.
This effect can be taken into account by an appropriate modification of the
[F] matrix, incorporating a change in bending moment across each mass given

by

AM; = - Pplxeg (D3)
yielding the element

Fai0 = - ﬂzplxe (D4)

The second and fifth terms represent the effect of centrifugal forces
acting on the torsionally undisplaced masses between x and R on bending about

the torsionally displaced n and £ axes in the M; and Mp components respectively.

They nmust be taken into account in the development of the [E] matrix. In terms
of the lumped mass model, the contribution to the bending moments in the bay
between the nth and (n+l)th masses is

(&



sin By 52 @®1305x5e3 sin By+cos Pn §j pitixses cos By )4

M =
i=1 i=1
_ iy
(D5)
n n
Mz = {-cos B }: szilixiei sin Bi+sin Bp }: 2Ppilixiei cos B3 ¢
i=1 i=1

Oy

There is correspondingly an effect of bending on torque. It is associated
with the fact that with a bending slope 6i at station x the centrifugal force
Rp1x3dx; on an element dx; at station x; outboard of station x has a component
—erlxldxlﬁi normal to the n-axis in the plane of the cross section at station
X. The moment arm of this force about the elastic axis is e; cos(pB-B1), so
that the contribution to the torque from this source may be written,

R
Q = - 81¥£\ Ppixier cos(B-B1)dxy

R R
= - <§in BL/\ ®pixie; sin Bidxi+cos B\lﬁ szlxlel cos PBidx; Bi (D6)
X

Applying this result to the lumped mass model, the contribution to the
torque in the bay between the nth ard (n+l)th masses is

n n
\
Q = - (sin B, E: 22p;Lixieq sin B +cos Bniz Ppilixjei cos ﬁ;) 5,

i=]1 i=1 (D7)

and is taken into account in the development of the [E] matrix in Appendix C.
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